Philadelphia University

Lecture Notes for 650364

Probability \& Random Variables

Lecture 6: Gaussian Random Variable, Other Distribution and Density Types
Department of Communication \& Electronics Engineering

Instructor
 Dr. Qadri Hamarsheh

Email: qhamarsheh@philadelphia.edu.jo
Website: http://www.philadelphia.edu.jo/academics/qhamarsheh

Outlines

Gaussian Random Variable Other Distribution and Density Types

Gaussian Random Variable

\checkmark One of the most often used continuous probability distributions is called the normal probability distribution.
\checkmark A random variable \mathbf{X} is called Gaussian (Normal) if its density function has the form

$$
\begin{array}{|c}
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma_{X}^{2}}} e^{-\left(x-a_{X}\right)^{2} / 2 \sigma_{X}^{2}} \\
\text { where } \sigma_{X}>0 \text { and }-\infty<a_{X}<\infty \quad \text { are real constants. }
\end{array}
$$

\checkmark Figure below shows two Gaussian density functions with the same mean and different variances. One is more concentrated around the
mean, whereas the other one has a wider spread. Clearly, we need at least an additional parameter to measure this spread around the mean!

\checkmark The distribution function of the Gaussian random variable:

$$
F_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma_{X}^{2}}} \int_{-\infty}^{x} e^{-\left(\xi-a_{X}\right)^{2} / 2 \sigma_{X}^{2}} d \xi
$$

- This integral has no known closed-form solution and must be evaluated by numerical methods
- It appears we need a different table for every choice of values for ax_{x} and σ_{x}.
\checkmark The normal distribution has the following properties:

1) It is bell-shaped.
2) The mean, median, and mode are at the center of the distribution.
3) It is symmetric about the mean.
4) It is continuous.
5) It never touches the x axis.
6) The total area under the curve is 1 or 100%.
7) About 0.68 or 68% of the area under the curve falls within one standard deviation on either side of the mean. About 0.95 or 95% of the area under the curve falls within two standard deviations of the mean. About 1.00 or 100% of the area falls within three standard deviations of the mean.

\checkmark Normalized Gaussian distribution function $\mathbf{F}(\mathbf{x})$

\checkmark The standard normal distribution has all the properties of a normal distribution, but the mean is zero and the standard deviation is one

\checkmark A value for any variable that is approximately normally distributed can be transformed into a standard normal value by using the following formula:

$$
z=\frac{\text { value }- \text { mean }}{\text { standard deviation }}
$$

\checkmark The standard normal values are called z values or z scores.
\checkmark Tables for specific z values can be found in any statistics textbook

\checkmark The general Gaussian distribution function can be found in terms of the normalized distribution function $F(x)$ in table:

$$
\begin{aligned}
& \text { let } u=\left(\xi-a_{X}\right) / \sigma_{X} \\
& F_{X}(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\left(x-a_{X}\right) / \sigma_{X}} e^{-u^{2} / 2} d u=F\left(\frac{x-a_{X}}{\sigma_{X}}\right)
\end{aligned}
$$

For example if $a_{X}=1$ and $\sigma_{X}=2$ then

$$
F_{X}(3)=F\left(\frac{3-1}{2}\right)=F(1)=0.8413
$$

and

$$
\begin{aligned}
F_{X}(-3) & =F\left(\frac{-3-1}{2}\right)=F(-2)=1-F(2) \\
& =1-0.9772=0.0228
\end{aligned}
$$

\checkmark Example: Assume that the height of clouds above the ground at some location is a Gaussian random variable \mathbf{X} with $\mathrm{ax}_{\mathrm{X}}=1830 \mathrm{~m}$ and $\sigma_{\mathrm{X}}=$ 460 m . Find the probability that the clouds will be higher than 2750 m

$$
\begin{aligned}
P\{X>2750\} & =1-P\{X \leq 2750\} \\
& =1-F_{X}(2750) \\
& =1-F\left(\frac{2750-1830}{460}\right)=1-F(2)=0.0228
\end{aligned}
$$

Other Distribution and Density Types

1)Binomial Distribution:

- Binomial Density Function:

$$
\begin{aligned}
& f_{X}(x)=\sum_{k=0}^{N}\binom{N}{k} p^{k}(1-p)^{N-k} \delta(x-k) \\
& \text { where } 0<p<1, \text { and } N=1,2, \ldots \text { and }\binom{N}{k}=\frac{N!}{k!(N-k)!}
\end{aligned}
$$

- The corresponding (binomial) distribution function:

$$
F_{X}(x)=\sum_{k=0}^{N}\binom{N}{k} p^{k}(1-p)^{N-k} u(x-k)
$$

\bigcirc Example: $\mathbf{p}=0.25$ and $\mathbf{N}=6$

2)Poisson Distribution:

\checkmark The Poisson random variable \mathbf{X} has a density and distribution given by:

$$
\begin{aligned}
& f_{X}(x)=e^{-b} \sum_{k=0}^{\infty} \frac{b^{k}}{k!} \delta(x-k) \\
& F_{X}(x)=e^{-b} \sum_{k=0}^{\infty} \frac{b^{k}}{k!} u(x-k)
\end{aligned}
$$

- where $b>0$ is a real number
\checkmark The probability of x successes is

Where e is a mathematical constant ≈ 2.7183 and λ is the mean or expected value of the variable.
\checkmark Example: If there are 150 typographical errors randomly distributed in a 600 -page manuscript, find the probability that any given page has exactly two errors.
o Solution: Find the mean numbers of errors

$$
\lambda=\frac{150}{600}=\frac{1}{4} \text { or } 0.25
$$

In other words, there is an average of 0.25 errors per page. In this case, $x=2$, so the probability of selecting a page with exactly two errors is

$$
\frac{e^{-\lambda} \lambda^{x}}{x!}=\frac{(2.7183)^{-0.25} \cdot(0.25)^{2}}{2!}=0.024
$$

Hence the probability of two errors is about 2.4\%.

3)Uniform Distribution:

- The Uniform probability density and distribution functions are given by:

$$
\begin{aligned}
& f_{X}(x)= \begin{cases}1 /(b-a) & a \leq x \leq b \\
0 & \text { elsewhere }\end{cases} \\
& F_{X}(x)=\left\{\begin{array}{lr}
0 & x<a \\
(x-a) /(b-a) & a \leq x<b \\
1 & b \leq x
\end{array}\right.
\end{aligned}
$$

$$
\text { for real constants }-\infty<a<\infty \text { and } b>a \text {. }
$$

- Example:

4)Exponential Distribution:
- The exponential density and distribution functions are:

$$
\begin{aligned}
& \qquad f_{X}(x)= \begin{cases}\frac{1}{b} e^{-(x-a) / b} & x>a \\
0 & x<a\end{cases} \\
& \qquad F_{X}(x)= \begin{cases}1-e^{-(x-a) / b} & x>a \\
0 & x<a\end{cases} \\
& \text { for real numbers }-\infty<a<\infty \text { and } b>0 .
\end{aligned}
$$

5)Rayleigh Distribution:

- The Rayleigh density and distribution functions are:
$f_{X}(x)= \begin{cases}\frac{2}{b}(x-a) e^{-(x-a)^{2} / b} & x \geq a \\ 0 & x<a\end{cases}$
$F_{X}(x)= \begin{cases}1-e^{-(x-a)^{2} / b} & x \geq a \\ 0 & x<a\end{cases}$
for real numbers $-\infty<a<\infty$ and $b>0$.

