Philadelphia University

Lecture Notes for 650364

Probability & Random Variables

Lecture 6: Gaussian Random Variable, Other Distribution and Density Types

Department of Communication & Electronics Engineering

Instructor Dr. Qadri Hamarsheh

Email:ghamarsheh@philadelphia.edu.joWebsite:http://www.philadelphia.edu.jo/academics/ghamarsheh

Outlines

Gaussian Random Variable Other Distribution and Density Types

Gaussian Random Variable

- ✓ One of the most often used continuous probability distributions is called the normal probability distribution.
- \checkmark A random variable X is called **Gaussian** (Normal) if its density function has the form

$$f_{X}(x) = \frac{1}{\sqrt{2\pi\sigma_{X}^{2}}} e^{-(x-a_{X})^{2}/2\sigma_{X}^{2}}$$

where $\sigma_X > 0$ and $-\infty < a_X < \infty$ are real constants.

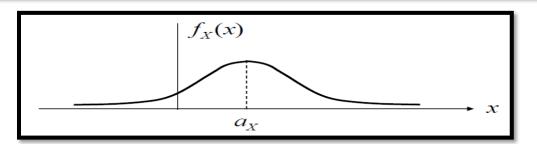
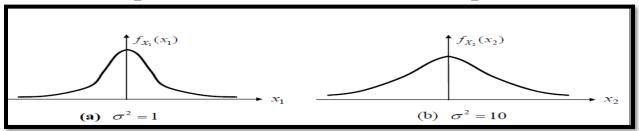
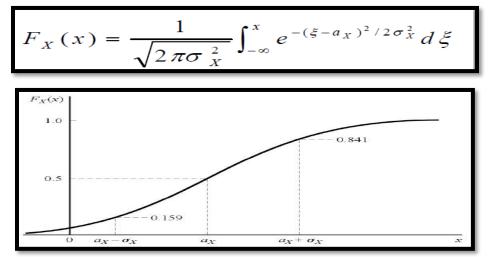


 Figure below shows two Gaussian density functions with the same mean and different variances. One is more concentrated around the mean, whereas the other one has a wider spread. Clearly, we need at least an additional parameter to measure this spread around the mean!



 \checkmark The **distribution function** of the Gaussian random variable:



- $_{\odot}$ This integral has **no known closed-form** solution and must be evaluated by numerical methods
- \odot It appears we need a different table for every choice of values for a_X and $\sigma_X.$

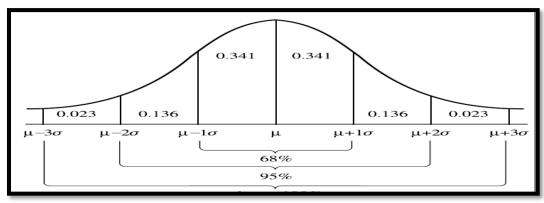
 \checkmark The normal distribution has the following properties:

1) It is **bell-shaped**.

2) The **mean**, **median**, and **mode** are at the **center** of the distribution.

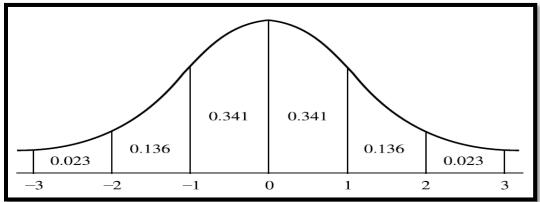
- 3) It is **symmetric** about the **mean**.
- 4) It is **continuous**.
- 5) It never touches the x axis.
- 6) The total area under the curve is 1 or 100%.

7) About 0.68 or 68% of the area under the curve falls within one standard deviation on either side of the mean. About 0.95 or 95% of the area under the curve falls within two standard deviations of the mean. About 1.00 or 100% of the area falls within three standard deviations of the mean.



 \checkmark Normalized Gaussian distribution function F(x)

✓ The standard normal distribution has all the properties of a normal distribution, but the mean is zero and the standard deviation is one



✓ A value for any variable that is approximately normally distributed can be transformed into a standard normal value by using the following formula:

$$z = \frac{\text{value} - \text{mean}}{\text{standard deviation}}$$

 \checkmark The standard normal values are called z values or z scores.

 \checkmark Tables for specific z values can be found in any statistics textbook

x	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.50000	.50399	.50798	.51197	51595	.51994	.52392	.52790	.53188	.53586
0.1	53983	.54380	54776	.55172	55567	.55962	.56356	56749	57142	.57535
0.2	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026	.61409
0.3	.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803	.65173
0.4	.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439	.68793
0.5	.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904	.72240
0.6	.72575	.72907	.73237	73565	73891	.74215	.74537	.74857	.75175	.75490
0.7	.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	,78230	.78524
0.8	.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057	.81327
0.9	.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646	.83891
1.0	.84134	.84375	.84614	.84849	.85083	.85314	.85543	,85769	.85993	.86214
1.1	.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100	.88298
1.2	.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973	.90147
1.3	.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621	.91774
1.4	.91924	.92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056	.93189
1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295	.94408
1.6	.94520	.94630	.94738	94845	.94950	.95053	.95154	.95254	.95352	.95449
1.7	.95543	.95637	.95728	.95818	.95907	.95994	.96080	.96164	.96246	.96327
1.8	.96407	.96485	.96562	.96638	.96712	.96784	.96856	.96926	.96995	.97062
1.9	.97128	.97193	.97257	.97320	.97381	.97441	.97500	.97558	.97615	.97670
2.0	.97725	.97778	.97831	.97882	.97932	.97982	.98030	.98077	,98124	.98169
2.1	.98214	.98257	.98300	.98341	.98382	.98422	.98461	.98500	.98537	.98574
2.2	.98610	.98645	.98679	.98713	.98745	.98778	.98809	.98840	.98870	.98899
2.3	.98928	.98956	.98983	.99010	.99036	.99061	.99086	.99111	.99134	.99158
2.4	.99180	.99202	.99224	.99245	.99266	.99286	.99305	.99324	.99343	.99361
2.5	.99379	.99396	.99413	.99430	.99446	.99461	.99477	.99492	.99506	.99520
2.6	.99534	.99547	.99560	.99573	.99585	.99598	.99609	.99621	.99632	.99643
2.7	.99653	.99664	.99674	.99683	,99693	.99702	.99711	,99720	.99728	.99736
2.8	.99744	.99752	.99760	.99767	.99774	.99781	.99788	.99795	.99801	.99807
2.9	.99813	.99819	.99825	.99831	.99836	.99841	.99846	.99851	.99856	.99861
3.0	.99865	.99869	.99874	.99878	.99882	.99886	.99889	.99893	.99896	.99900
3.1	.99903	.99906	.99910	.99913	.99916	.99918	.99921	.99924	.99926	.99929
3.2	.99931	.99934	.99936	.99938	.99940	.99942	.99944	.99946	.99948	.99950
3.3	.99952	.99953	.99955	.99957	.99958	.99960	.99961	.99962	.99964	.99965
3.4	.99966	.99968	.99969	.99970	99971	.99972	.99973	.99974	.99975	.99976
3.5	.99977	.99978	.99978	.99979	.99980	.99981	.99981	.99982	.99983	.99983
3.6	.99984	.99985	.99985	.99986	.99986	.99987	.99987	.99988	.99988	.99989
3.7	.99989	.99990	.99990	_99990	.99991	.99991	.99992	.99992	.99992	.99992
3.8	.99993	.99993	.99993	.99994	.99994	.99994	.99994	.99995	.99995	.99995
3.9	.99995	.99995	.99996	.99996	.99996	.99996	.99996	.999996	.99997	.99997

$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\xi^{2}/2} d\xi$$

$$\sigma_{X}^{2} = 1 \quad \text{and} \quad a_{X} = 0$$

$$\int_{a_{X}} f_{X}(x)$$

$$a_{X} = 0$$

$$F(-x) = 1 - F(x)$$

 \checkmark The general Gaussian distribution function can be found in terms of the normalized distribution function F(x) in table:

let
$$u = (\xi - a_X) / \sigma_X$$

 $F_X(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{(x-a_X)/\sigma_X} e^{-u^2/2} du = F\left(\frac{x-a_X}{\sigma_X}\right)$
For example if $a_X = 1$ and $\sigma_X = 2$ then
 $F_X(3) = F\left(\frac{3-1}{2}\right) = F(1) = 0.8413$
and
 $F_X(-3) = F\left(\frac{-3-1}{2}\right) = F(-2) = 1 - F(2)$
 $= 1 - 0.9772 = 0.0228$

Probability & Random Variables

✓ **Example**: Assume that the height of clouds above the ground at some location is a Gaussian random variable X with $a_x = 1830m$ and $\sigma_x = 460m$. Find the probability that the clouds will be higher than 2750m

$$P\{X > 2750\} = 1 - P\{X \le 2750\}$$

= 1 - F_X (2750)
= 1 - F $\left(\frac{2750 - 1830}{460}\right) = 1 - F(2) = 0.0228$

Other Distribution and Density Types

1)Binomial Distribution:

o Binomial Density Function:

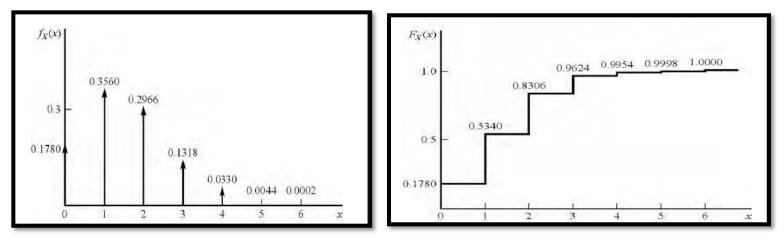
$$f_{X}(x) = \sum_{k=0}^{N} \binom{N}{k} p^{k} (1-p)^{N-k} \delta(x-k)$$

where $0 , and $N=1,2,...$ and $\binom{N}{k} = \frac{N!}{k!(N-k)!}$$

• The corresponding (binomial) distribution function:

$$F_{X}(x) = \sum_{k=0}^{N} \binom{N}{k} p^{k} (1-p)^{N-k} u(x-k)$$

• **Example:** p =0.25 and N = 6



2)Poisson Distribution:

 \checkmark The Poisson random variable X has a density and distribution given by:

$$f_{X}(x) = e^{-b} \sum_{k=0}^{\infty} \frac{b^{k}}{k!} \delta(x-k)$$
$$F_{X}(x) = e^{-b} \sum_{k=0}^{\infty} \frac{b^{k}}{k!} u(x-k)$$

• where b > 0 is a real number

 \checkmark The probability of x successes is

$$\frac{e^{-\lambda}\lambda^x}{x!}$$

Where e is a mathematical constant ≈ 2.7183 and λ is the mean or expected value of the variable.

 Example: If there are 150 typographical errors randomly distributed in a 600-page manuscript, find the probability that any given page has exactly two errors.

• Solution: Find the mean numbers of errors

$$\lambda = \frac{150}{600} = \frac{1}{4} \text{ or } 0.25$$

In other words, there is an average of 0.25 errors per page. In this case, x=2, so the probability of selecting a page with exactly two errors is

$$\frac{e^{-\lambda}\lambda^x}{x!} = \frac{(2.7183)^{-0.25} \cdot (0.25)^2}{2!} = 0.024$$

Hence the probability of two errors is about **2.4%**.

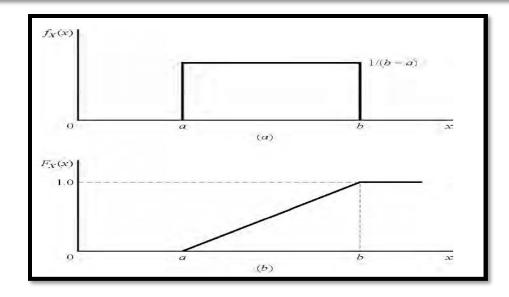
3)Uniform Distribution:

 The Uniform probability density and distribution functions are given by:

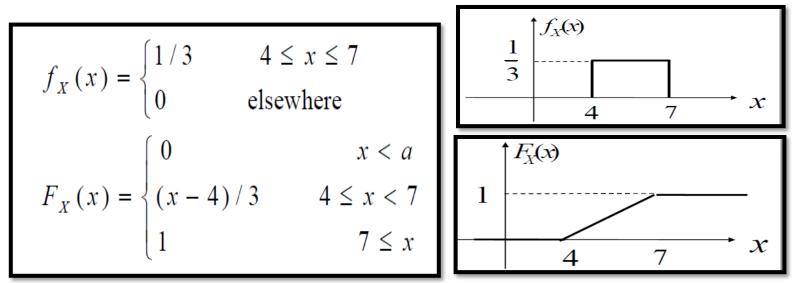
$$f_X(x) = \begin{cases} 1/(b-a) & a \le x \le b \\ 0 & \text{elsewhere} \end{cases}$$

$$F_X(x) = \begin{cases} 0 & x < a \\ (x-a)/(b-a) & a \le x < b \\ 1 & b \le x \end{cases}$$

for real constants $-\infty < a < \infty$ and b > a.



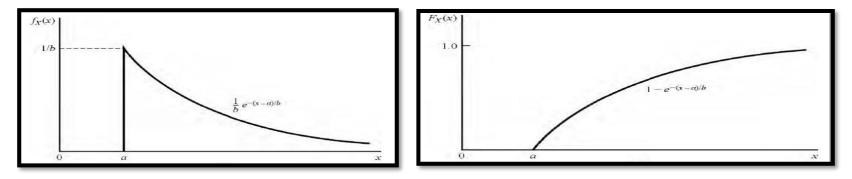
• Example:



4)Exponential Distribution:

• The exponential density and distribution functions are:

$$f_X(x) = \begin{cases} \frac{1}{b} e^{-(x-a)/b} & x > a \\ 0 & x < a \end{cases}$$
$$F_X(x) = \begin{cases} 1 - e^{-(x-a)/b} & x > a \\ 0 & x < a \end{cases}$$
for real numbers $-\infty < a < \infty$ and $b > 0$.



5)Rayleigh Distribution:

 $_{\odot}$ The Rayleigh density and distribution functions are:

